
Heritage Support Package for OS/2200

IP-635

Confidential

Feb 2007

This edition applies to TIP Studio 2.5 and revision levels of TIP Studio 2.5
until otherwise indicated in a new edition. Publications can be requested
from the address given below.

Inglenet Business Solutions Inc reserves the right to modify or revise this
document without notice. Except where a Software Usage Agreement has
been executed, no contractual obligation between Inglenet Business
Solutions Inc and the recipient is either expressed or implied.

It is agreed and understood that the information contained herein is
Proprietary and Confidential and that the recipient shall take all
necessary precautions to ensure the confidentiality thereof.

If you have a license agreement for TIP Studio or TIP/ix with Inglenet
Business Solutions Inc, you may make copies of this documentation for
internal use. Otherwise, you may not copy or transmit this document, in
whole or in part, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of
Inglenet Business Solutions Inc.

Inglenet Business Solutions Inc

Toll Free: 1-800-387-9391
Website: http://www.Inglenet.com
Sales: Sales@Inglenet.com
Help Desk: HelpDesk@Inglenet.com

TIP Studio, TIP/ix, and TIP/30, and are registered trade marks of Inglenet
Business Solutions Inc:

This documentation occasionally makes reference to the products of
other corporations. These product names may be trade marks, registered
or otherwise, or service marks of these corporations. Where this is the
case, they are hereby acknowledged as such by Inglenet Business
Solutions Inc.

© Inglenet Business Solutions Inc, 1990-2007

Heritage Support Package For Unisys 2200

Feb 2007 Draft 2.5 - Confidential i

Contents

Heritage Support Package For Unisys 2200..............3
OS/2200 to TIP/ix Conversion Utilities.............................. 3

Introduction.. 3
Summary of Utilities .. 3
UNIX Environment Variables... 4
Considerations .. 4

armdata - Read/Write OS/1100 Data Tapes...................... 4
Before Using:... 5
Set Up Environment Variables: ... 5
Using COPYPROCS ... 6
Types of Input.. 6
Using armdata with an armdata Command File.................. 8
Transfer Source Files from 1100/2200.............................. 24

armrpg - RPG-ll to COBOL Converter............................. 28
Environment Variables .. 28
Additional considerations .. 30
Support for Data Structures... 31
Support for Local Data Area.. 31

armsort - Mainframe compatible sort 31
Environment Variables .. 32
Using armsort .. 35

Supported OS/2200 APIs.. 37
Common Issues .. 37
DPS API .. 38
Integrated Recovery Environment (IRE) Functions.......... 42
MCB API.. 44
COMPOOL Support .. 46
KONS API ... 46
FCSS API .. 50
Miscellaneous.. 57

Heritage Support Package For Unisys 2200

Feb 2007 Draft 2.5 - Confidential 3

Heritage Support Package For Unisys 2200

OS/2200 to TIP/ix Conversion Utilities

Introduction

This document describes special purpose conversion utilities supplied
with TIP/ix. These utilities are provided to assist users moving
applications and data files from the Unisys 2200 OS/2200 environment to
the TIP/ix UNIX environment.

Some of the HSP/22 utilities are used for migrating both System 80 and
2200 COBOL applications, so some of the options in this manual do not
apply to the 2200 environment.

The terms copybook and COPYPROC are used as synonyms in this
manual.

Summary of Utilities

The following table summarizes the utility programs available and their
purpose:

Program Functions

armdata Load file (usually 9-track magnetic tape) produced by
OS/2200 COPY,G or COPOUT into UNIX file system
(C-ISAM compatible).
Uses specified COBOL COPY element(s) to assist
translation of data from EBCDIC to ASCII or from
OS/2200 data representation to appropriate UNIX
representation.

armrpg Convert RPG-II source programs into UNIX COBOL-
85 source programs. This converter recognizes
batch, on-line IMS and on-line TIP/1100 RPG-II
programs and transforms them into appropriate
COBOL-85 programs.

armsort Utility to properly handle sort statements in the ECL
stream. Can use both UNIX sort and Syncsort

Heritage Support Package for OS/2200

4 Proprietary IP-635

UNIX Environment Variables

You should review the following UNIX environment variables:

TMPDIR
Some versions of UNIX allow you to override the default
directory for temporary files, /tmp, by specifying an
environment variable, TMPDIR, that specifies where to put
temporary files.

For a combined list of TIP/ix, HSP/80, HSP/22, and other related
environment variables, browse the file $TIPROOT/scripts/arm.tipsetenv.

Considerations

Operating in the UNIX environment generates some considerations for
customers porting applications from mainframes. UNIX does not split
blocks into logical records for your applications. For example, if your data
has a logical record length of 80 bytes, and is blocked into 4000 byte
blocks, your UNIX COBOL application by default will only see the first
record from each block! This can be resolved by using the armdata utility
to read the tape and create an output file with one record in each block.

Another consideration is that UNIX does not provide standard tape label
processing. Again, this can be resolved by using the HSP/22 armdata
utility.

armdata - Read/Write OS/1100 Data Tapes

The armdata utility:

 loads data files to UNIX from tapes produced by OS/2200 in COPY,G
format

 loads source code from OS/2200 in COPOUT format
 stores data files from UNIX to (optionally labeled) tapes suitable for

OS/3 and other EBCDIC systems.
The armdata program is a file creation/deletion, backup/restore utility.
You may create Indexed, Sequential or Relative files. You may load data
into these empty files from an existing UNIX file or transfer an existing file
to any valid UNIX file (for example: disk, diskette, tape...).

Unlike mainframes, UNIX does not provide record blocking and
deblocking facilities. Fortunately, you can get around this problem by
using armdata to copy blocked files from tape to an unblocked disk file.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 5

Before Using:

Find the device driver name for the tape drive on your system.

For example:
 /dev/rmt/tg6 or /dev/rmt/tg6n

A hint for finding the device driver names is to look in the /dev directory
then look in the subdirectory /rmt. You can try each one of the drivers you
find here until you find the one that lights up the tape drive. You can use
the UNIX dd command for this purpose.

If you want to read or produce labeled tapes, you must tell UNIX “do not
rewind the tape upon closing.” There are two ways to do this:

Specify a device name which means “do not rewind” in the armdata
command file. This device name usually ends (or begins) with the letter
‘n’. Or

Set up the TIPTAPENRWD environment variable to specify “no rewind”
as described in the following section.

Set Up Environment Variables:

If the input device name is not specified in the armdata command file,
armdata accepts it from the following environment variables:

TIPTAPE
This device name means "rewind after closing".

TIPTAPENRWD
This device name means "do not rewind after closing".

If both of these variables are set, TIPTAPE overrides
TIPTAPENRWD. Therefore, do not specify TIPTAPE if you
want to suppress rewind.

The command file (previously called the grammar file)
always overrides the environment variables:

TIPTAPEREAD
If TIPTAPEREAD is set to ‘F’ then armdata will use the
UNIX fread command to read the input file instead of the
default read command. The fread command will buffer
input as opposed to reading the exact number of bytes
requested. This is necessary on some UNIX systems (such
as Data General) whose device drivers are limited to
reading a fixed number of bytes (usually 512).

For a combined list of TIP/ix, HSP/80, HSP/22, and other related
environment variables, browse the file $TIPROOT/scripts/arm.tipsetenv.

Heritage Support Package for OS/2200

6 Proprietary IP-635

Using COPYPROCS

If your file contains computational or packed data, it is easiest (but not
required) to supply a COBOL copybook describing the data layout. If your
file contains multiple record types, you will need to know the record
identifier for each type to tell armdata how to convert the file.

Types of Input

The armdata utility can process the following inputs:

Input Description

OS 1100/2200 OS 1100/2200 SDF containing a data file in
COPY,G format even if it contains binary and
PIC 1 format data. Record sizes may
expand.

OS 1100/2200 SDF of a print file in COPY,G
format.

OS 1100/2200 COPOUT file format.

On the 1100 or 2200, the size of a COPY,G
block is one “track” (7176 bytes of 9 bits).
On UNIX, this corresponds to a blocksize of
8073 (8-bit bytes).

Flat ASCII Flat ASCII files in UNIX, DOS or sequential
(no record separators) format. The block size
may be up to 32,768 bytes.

Interchange
Format

Tapes created in Interchange Format. The
interchange format will require a copybook if
the file contains any signed numerics. The
block size may be up to 32,768 bytes.

OS/3 Labeled tapes created by OS/3 data utilities
— even if they contain binary data. The block
size may be up to 32,768 bytes.

Note: We strongly recommend creating
labeled tapes because the labels contain the
record size and block size – and the
operating system does not lie about record
sizes.

If your file contains non-character data, you must describe the record
layout. (The easy way is to provide a COBOL copybook. The hard way is
to supply the offsets on the command line.) The armdata utility can read
both labeled or unlabeled tapes from the 1100/2200.

Syntax

armdata [-Q] -Gfilename

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 7

armdata [-Q] -R:copyname

Where:

-Q Do not display or update the number of "Records
restored". Specify this option if you want to redirect
armdata messages to a file.

-G Use an armdata command file.

filename
The name of the input armdata command file.
Example: armdata -G/u/fred/paygram

-R: The armdata utility will review the specified COBOL
copybook and report whether it detects fields whose
definition will vary depending on the COBOL compiler. See
later discussion of the "ID IS" clause.
If the "R" is followed by "S" (that is, -RS:), the report
produced is a summary of one line for each input copy
module.

copyname
The filename of the COBOL COPY module to be
examined.
Example: armdata -R:paymast

Normally, you specify all parameters to armdata in a command file
containing keywords and specifications (in ASCII). The only command
line parameter expected by armdata is a specification of the filename
where the armdata command file is located.

The armdata utility may also be driven with command line options,
however this is recommended for simple commands that will be
performed once. When using the option method you are not required to
supply a copybook that defines the record layout, you may explicitly tell
armdata where the computational and packed fields (if any) reside. The
options are listed in later this section. Future enhancements to the
armdata command file will not be added to the option list.

To enable armdata to process files with multiple record types, you must
identify each record type to armdata via the ID IS statement. If you have
multiple conditions that determine the uniqueness of each record type,
you will have to separate the different types before processing. For
example:

if field-a = 1 AND field-b < 100 then
record type = type A

is not supported. If necessary, write a utility to separate the records.

The TIP/ix system includes a UNIX script, $TIPROOT/scripts/armcbchk,
that calls armdata with the -RS option for every file in the directory. This
only makes sense for files that are COBOL copybooks. If there are more

Heritage Support Package for OS/2200

8 Proprietary IP-635

than 24 copybooks in the directory, we recommend that you redirect the
output into a separate file (for example, armcbchk > xxx)

Execution:

You can invoke armdata by one of three names, depending on which
ISAM file system you will use:

Name Considerations

armdata For C-ISAM file structures. This uses D-ISAM from
Byte Designs (or Micro Focus batch created files).

armdmbp For MBP-ISAM users.

armdmbp4 For MBP ISAM users with files having an index
partition larger than 64 megabytes (up to 256
megabytes in size)

File definitions as specified to the TIP/ix smfile program must reflect
which ISAM is in use. The default is D-ISAM. If you use MBP ISAM, you
must specify mbpfcs in the FCS Server field of the file definition. Specify
mbp4fcs for files loaded with armdmbp4.

A backup and subsequent restore of an indexed file reorganizes it so that
the data partition is in sequential order. This reduces the size of the index
partition.

The armdata utility looks in the TIP/ix catalogue for file information only
when requested to do so, (via the READ TIPIX CATALOGUE statement).
If the output file is not defined to TIP/ix, the output file will be created in
the current directory.

Using armdata with an armdata Command File

Following is a summary of the command file accepted by armdata. All
armdata command file statements must begin in column 12 or greater.

BACKUP
CREATE
DELETE
RESTORE
ADD lfn [TO] TIPIX Catalogue
CASE [IS,=] {UPPER|LOWER}
TIPIX FILE [IS,=]
{INDEXED|RELATIVE|SEQUENTIAL}
BACKUP FILE [IS,=] (UNIX|
DOS|OS3|INTERCHANGE|COPYG|SDF|COPOUT|
FLAT <- default }
RECORD SIZE [IS,=] nnn
BLOCK SIZE [IS,=] nnn (block size of data
on tape)

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 9

COMPILER [IS,=] {MF|MBP}
PROCESS nnn RECORD(S)
LABEL RECORDS ARE {STANDARD | OMITTED}
TRANSLATE TO {EBCDIC|ASCII|ASCII-SIGNS}
DUPS COUNTER [IS,=] {HALFWORD|FULLWORD}
INPUT FILE [IS,=] filename
OUTPUT FILE [IS,=] filename
RAW field-name
RELAXED [SIGNED] [FILL [IS,=] {SPACES|LOW-
VALUES}]
MASKFILE file-name
SKIP nnn [RECORDS]
VOL [IS,=] xxxxxx
LBL [IS,=] yyyyyyyyyyyyyyyyy
KEY1 [IS,=] field-name
KEY2 [IS,=] field-name2 [PRIME|DUPS|NODUPS]
copybook [IS,=] COPY filename
ID IS fielda > value USE field1.
ID IS fieldb > value USE field2.
ID IS fieldc > value USE field3.
ID IS a AND b [...AND c] USE field4.
ID IS d OR e [...OR f] USE field5.
ID IS a AND b [AND c] OR d AND e [AND f]
USE field6.
ID IS (a AND b AND c) OR (d AND e AND f)
USE field6.
VALIDATE NUMERIC
EXPLODE [SIGN LEADING | TRAILING]

Where:

BACKUP
Take the input file which is in TIP/ix format and copy it one
record at a time to the output file which is specified by the
BACKUP FILE statement.

CREATE
Create an empty file named according to the specification
for OUTPUT FILE. For indexed files, two files are created:
one for the data partition and one for the index partition.
When using armdata the extensions are ".dat" and ".idx"
respectively.
When using armdmbp or armdmbp4 the extensions are
".DAT" and ".KEY" respectively.

DELETE
Delete the file specified by OUTPUT FILE.

RESTORE
Read the input file and write it one record at a time

Heritage Support Package for OS/2200

10 Proprietary IP-635

to the output file.
CREATE and RESTORE may be included in the same
armdata command file. The file will be created then loaded
if this is the case.

CASE [IS,=] {UPPER|LOWER}
Translate the complete path and file name in the
Label/Path field of the file record to uppercase or
lowercase. The default is lowercase.

ADD lfn [TO] TIPIX [Catalogue] [OVERwrite]
Optional specification to add the output file specifications
to the TIP/ix catalogue information (as if it had been
defined via SMFILE).

"lfn" is the name of the file as it is known to TIP/ix. The
name is forced to uppercase and added to the list
of TIP/ix files with the current parameters as
specified in this armdata command file (such as:
key values, record size, file type etc.).

OVERwrite
causes the catalogue entry to be overwritten if it
currently exists.
The armdata utility checks the catalogue to see if
the LFN already exists.

If the LFN does not exist, armdata looks for the DEFAULT
record and uses it to build LFN, if either are found and
overwrite was selected, armdata updates the time and date
stamp, and fills in any required fields which may have been
left blank.

These hard coded default fields are as follows:

file access = read/write,
file sharing = shared;
record holding = hold for transaction;
record journal = no;
record logging = no;
load to memory = no.
If neither the LFN nor DEFAULT exists, armdata
will create the system record with the
aforementioned default values.

TIPIX FILE [IS,=] {INDEXED|SEQUENTIAL|RELATIVE}
Used with the CREATE or BACKUP command to specify
which type of file to create. This specification must be
supplied.

BACKUP FILE [IS,=] {UNIX | DOS | OS3 | INTERCHANGE |
COPYG | SDF | COPOUT | FLAT}
If this statement is omitted, the default file type is FLAT.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 11

“FLAT”
means a flat ASCII file containing no record
separators.

"UNIX"
means that records are separated by a carriage
return.

"DOS"
means that records are separated by a carriage
return and a line feed.
Do not specify “DOS” or “UNIX” for input records
that contain any characters of value less than a
space (< X’20’).
Instead, specify “FLAT” and use the block and
record sizes to specify how the data will be read.
Writing “DOS” or “UNIX” records that contain
characters less than a space is allowed, but is not
recommended.

“INTERCHANGE”
is a standard inter computer format containing no
binary data, however signed numeric data will
require a mask to allow proper conversion

“COPYG”
an OS/1100 format in 9 bits / byte

“SDF”
an OS/1100 format containing 9 bits/byte

“COPOUT”
an OS/1100 @COPOUT,S format

“OS3”
implies that you are using an EBCDIC file. (You are
reading it from, or creating it for OS/3).

RECORD SIZE [IS,=] nnn

The armdata utility checks the TIP/ix catalogue for the
record size when the READ TIPIX CAT option is used. If
the file is defined to TIP/ix, the record size is taken from
the TIP/ix catalogue since this is the size FCS will use
when accessing the file.

nnn is the actual size in bytes of each record in the
output file.

If the input tape has standard labels, the information in the
tape label is considered correct and this clause is ignored.

If a copybook is supplied, and its size differs from the label
size, then armdata will prompt the user to make a decision
on the actual record size.

This clause is not necessary when a copybook is supplied.

BLOCK SIZE [IS,=] nnn
Used with files that are blocked on tape. Also used when

Heritage Support Package for OS/2200

12 Proprietary IP-635

the input size differs from the output size (input/block size
= x output/record size = y)

nnn is the block size in bytes of the data on tape.

If the input tape has standard labels, the information in the
tape label is considered correct and this clause is ignored.

COMPILER [IS,=] {MF|MBP}
Since the Micro Focus and MBP COBOL compilers expect
signed numeric data in different formats, armdata needs to
know which compiler you are using so that it can convert
the data correctly.

PROCESS nnn RECORD(S)

nnn is the number of records to process before
termination.

This can be useful in creating sample data where only a
portion of the file is transferred.

Optional parameter; default is process all records in the
file.

LABEL RECORDS ARE STANDARD | OMITTED
Specify if the tape is labeled. The default is STANDARD
(the tape has a label).

TRANSLATE TO {EBCDIC | ASCII | ASCII-SIGNS}
Specify the desired translation for the output file.

TO ASCII
to translate an EBCDIC input file to an ASCII output
file.

TO EBCDIC
to translate an ASCII input file to an EBCDIC output
file.

TO ASCII-SIGNS
to take input that is already in ASCII and fix
unpacked signed fields so that they are in either MF
or MBP format (according to the COMPILER IS
parameter). This feature is useful if you use ftp to
translate mainframe EBCDIC data to ASCII and
transfer it to Unix. Note that in this case, the
conversion to ASCII is done by ftp, not by armdata.

Optional parameter; default is no translation done (unless
BACKUP FILE = OS/3 is specified).

DUPS COUNTER [IS,=] {HALFWORD | FULLWORD}
Set the field size where COBOL maintains the number of
records which have the same value as the current key:

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 13

Use with D-ISAM (Micro Focus) files only. The default
value of this optional keyword is HALFWORD.

HALFWORD
Allocate a two-byte binary field, limiting you to a
maximum of 32767 duplicates on any key.

FULLWORD
Allocate a four-byte binary field.

NOTE: Tests reveal that contrary to earlier armdata
documentation, using MF COBOL V4.x with
IDXFORMAT "4" declared in the select clause does
not create or accept a C-ISAM file structure
capable of recognizing a FULLWORD duplicate key
counter.

You can implement a FULLWORD counter, if you link the
batch COBOL program with the D-ISAM library supplied
with TIP/ix.

.bat:
cob $(FLAGS) -k $(@F).bat -o $(@F) –m
* ixfile=cixfile
* L$(TIPROOT)/lib +ldisam

After armdata creates a file with DUPS COUNTER IS
FULLWORD, always use the OPEN I-O statement in your
batch program. The OPEN OUTPUT statement causes
COBOL to operate with the default HALFWORD counter
size. Use the dcheck utility to show the file status.

INPUT FILE [IS,=] filename
Specify the filename that armdata opens for input (read).

The filename may be the full path name contained in
double quotes OR just the name of the file (with or without
quotes) if it is located in the current directory.

Example:
INPUT FILE IS "/tipix/files/datafile"

This clause is intended to be used to allow the
specification of the input file when the input is not from a
tape (for example, the data is already in a UNIX file on
disk.)

If the input to armdata is a tape, you don’t need to use the
INPUT FILE line, but armdata expects two environment
variables to be defined,

TIPTAPE
This environment variable defines the UNIX device
name to be used for the tape when rewind is
required.

Heritage Support Package for OS/2200

14 Proprietary IP-635

TIPTAPENRWD
This environment variable defines the UNIX device
name to be used for the tape when no rewind is
required.

Example:
TIPTAPE="/dev/rmt/0m"

Example:
TIPTAPENRWD="/dev/rmt/0mn"

INPUT FILE = will override these two environment
variables.

Note: If the first character is a dollar sign ($), then it will
be interpreted as an environment variable up to the
first ‘/’. (that is, $HOME/myfile will have $HOME
expanded and /myfile appended to the end).

OUTPUT FILE [IS,=] filename
Specify the filename that armdata opens for output (write).
filename may be the full path plus the name contained in
double quotes OR just the name of the file (with or without
quotes) if it is located in the current directory.

Example:
OUTPUT FILE IS "/tipix/files/xxxfile"

Note: If the first character is a dollar sign ($), then it will
be interpreted as an environment variable (see
INPUT FILE).

RAW field-name
Transfer the exact image for the field specified by field-
name. This may be used for fields defined as alphanumeric
that contain binary sensitive data. For multiple fields,
include a separate RAW declarative; up to a maximum of
10.

RELAXED [SIGNED] [FILL [IS,=] {SPACES|LOW-VALUES}]
Ignore binary sensitive data; while continuing to write the
records. This is useful if you don’t have a copybook
defining the record layout.

The SIGNED option checks for signed numeric data and
converts the sign byte correctly (NOTE: One byte signed
numerics PIC S9 will NOT be found).

A report specifying the location of each offensive byte
found along with its hexadecimal value is written to the file
named <filename>.rpt in the current directory.

The FILL option will overwrite all binary sensitive data with
the supplied character (a space or a low-value) The FILL
option will not create a report file.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 15

When a copybook is supplied, the relaxed option will leave
binary data in PIC X fields alone.

MASKFILE file-name
Tell armdata to write out what it thinks the record layout
looks like (based on the copybook) in the file named file-
name and stop processing.

SKIP n [RECORDS]
Specify (on a BACKUP or RESTORE function) the number
of records (not blocks) to be skipped before processing
begins.

Example:
SKIP 523

VOL [IS,=] xxxxxx
This keyword is used to specify the desired VOLume name
of a labeled output tape that armdata is to create. Up to six
characters may be specified to be used as the output tape
volume serial number. If VOL is not specified, output tapes
are not labeled!

Example:
VOL IS TAPE23

Both VOL and LBL must be specified if you want to write a
labeled tape.

LBL [IS,=] yyyyyyyyyyyyyyyyy
This keyword is used to specify the desired LaBeL name of
a labeled output tape that armdata is to create. Up to
seventeen characters may be specified to be used as the
output tape label name.

Example:
LBL IS RECREATED*PAYMAST

If LBL is not specified, output tapes are not labeled! Both
VOL and LBL must be specified if you want to write a
labeled tape.

KEY1 [IS,=] field-name

KEY2 [IS,=] field-name2 [PRIME|DUPS|NODUPS]

...

KEY10 [IS,=] field-name2 [PRIME|DUPS|NODUPS]
Specify the field names in the supplied copybook that
represent the keys for the file being created. Up to 10 key
specifications may be included. Keys 2 through 10 may (as
shown) define whether DUPS are allowed on that key.

Default is DUPS on all non-primary keys.

Heritage Support Package for OS/2200

16 Proprietary IP-635

The primary key (KEY1) must be NODUPS for TIP/ix files.
To specify a key other than KEY1 as primary, use the
directive PRIME. If you need the primary key to allow
duplicates, specify the keyword DUPS after the key
specification (for example, KEY2 = field-name2 PRIME
DUPS).

copybook [IS,=] COPY filename
Specify the filename that contains the COBOL copybook
defining the layout of the data records in this file. The
filename may be specified as an absolute (full) file name in
double quotes or as a relative file name.

Examples:
copybook IS COPY "/tipix/copy/PAYREC"
copybook IS COPY PAYREC

When using a relative file name, armdata looks for it first in
the same directory as the command file specified by the -G
option, then in the directories specified by the $COBCPY
environment variable, and finally in the $TIPROOT/include
directory.

ID IS field > value USE field.
Specify the conditions that armdata is to employ to
determine which of several REDEFINES apply to a
particular set of data.

Valid operators are (>, >=, =, <>, <=, <).

IMPORTANT: the ID IS statement(s) must be the last
statements in the armdata command file and follow the
copybook statement. Each ID statement must be
terminated with a period. The armdata utility must evaluate
all ID clauses for each record; thus, the last ID clause that
evaluates TRUE controls how the record is processed.

The armdata utility does not process complex expressions.
(for example, ID IS REC-STAT = “H” AND) is not
processed.

If you have redefined fields that contain binary data, you
need to use the ID IS statement to specify under what
conditions to use a certain redefines field.

To find out if your copybook contains any redefines of
interest use armdata with the -R option.

Example:
ID IS REC-STAT = "H" USE HEADER-LAYOUT.

The field REC-STAT may have a subscript.

IMPORTANT: make sure the field variable is of the same
type and length as the value part of the expression.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 17

ID IS [(] a AND b AND c [)] [...OR [(] d AND e AND f [)]].
If the logical expression contains both AND operators and
OR operators, the AND operations are performed first.

Note: You cannot override this behaviour with
parentheses.

VALIDATE NUMERIC
This command forces armdata to check all COMP-3 and
unpacked numeric fields. For packed fields, armdata
validates every digit in the field. For unpacked numeric
fields, armdata only checks for space characters.

If invalid data is found, a warning message is issued.

EXPLODE [SIGN LEADING | TRAILING]
When migrating, you may want to "explode" your data into
display format by expanding all COMP-3 and signed
unpacked (PIC S9) fields. Using your input copybook
definition as a guide, EXPLODE reformats packed and
signed unpacked data as signed ASCII data.

If EXPLODE is specified in the command file, armdata
adjusts the length and location of the keys. For this to
work, the following assumptions must be met:

Keys must not be defined in a REDEFINES, and

Keys must not overlap.

If any of the above assumptions does not apply, try to find
a work-around such as using the -k option.

In addition, a new copybook for the output is created. If the
input copybook is named "file", the output is named
"file.EXP".

Example:
EXPLODE
"9(5) COMP-3" to "9(5)"
Input x"12345F" to c"12345"

Example:
 EXPLODE SIGN LEADING
"S9(5) COMP-3" to a "S9(5) SIGN LEADING
SEPARATE"
Input x"12345c" to c"+12345"
"S9(2)" to a "S9(2) SIGN LEADING SEPARATE"
Micro Focus: Input x"3278" to c"-28"
MBP: Input x"3248" to c"-28"

The EXPLODE command saves you from having to write
programs to explode each record layout.

Heritage Support Package for OS/2200

18 Proprietary IP-635

Supported ID IS Literal Types
The following table shows the supported literal types for the various field
types processed in the ID IS statement.

Field Type Literal Type

Group /
Alphanumeric

String, Numeric, Hexadecimal
All literals will be left aligned for comparison
to the corresponding field.

Binary
(Computational)

Numeric, Hexadecimal, Octal
These literals are stored into a full word,
which may contain a maximum value of 2 to
the 31st power. Therefore the Numeric literal
may not exceed 9 digits in length, the Hex
literal may not exceed 8 characters and the
Octal literal may not exceed 10 digits.

Numeric Packed Numeric

Numeric
Unpacked

Numeric

OS 1100/2200 Specific:
When reading a tape created by COPY,G armdata will input blocks of
size 8073 bytes. This is the size of a COPY,G block in 8 bit bytes.

When reading a SDF file, armdata knows the input record size, however,
these records are stored in an area that is rounded up to the nearest word
boundary. Records will be output according to the largest record size
(supplied in the SDF header) OR the output record size will be
determined from the supplied COBOL copybook.

PICTURE 1 - The 2200 COBOL compiler supports 1 bit binary fields via
this clause. armdata recognizes these fields and converts them to 1 byte
for each bit defined. If the bit is on, the field value is a character 1, else a
character 0. This is done since PIC 1 is a non-standard extension the
UNIX COBOL compilers do not support.

Merging Files:
If you have a file to create on UNIX which arrives in two or more separate
parts, perhaps because it is very large, .merging the multiple pieces can
be done as follows.

To merge indexed files, load part one using armdata, then load the
second part using armdata and you will get a prompt asking if you want to
Overwrite, Merge or Cancel. When you select the Merge option, armdata
will combine the two files for you, updating any duplicate records with the
record from the second part (or latest version if more than 2 parts).

To merge sequential files, copy the files to UNIX (use the UNIX dd
command if you have your files on a 9 track tape) then use the UNIX cat

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 19

command to combine the file parts into one piece. Make sure to combine
them in the order they belong, with sequential files, order is important!
You may now use armdata to convert the file properly. (that is EBCDIC to
ASCII and binary, packed number and signed numeric conversions).
Example cat command: cat file1 file2 > file3, this combines file1 and file2
into file3.

To merge a relative file, follow the same steps as for a sequential file.

armdata does handle multi-volume 9 track tapes.

Input/Output files of Different sizes:
If you wish to expand a record upon output; RECORD SIZE = nnn will
dictate the input record size and copybook IS COPY copy bookname will
dictate the output record size. Expanded records will be filled with low
values. (This does not pertain to COPY,G format)

armdata Command File Example
The following example creates an indexed file named /tipix/tipfiles/insfile.
The file has two keys and a TIP/ix catalog entry for the SAMPFILE file.

CREATE
RESTORE
TIPIX FILE IS INDEXED
ADD sampfile TO TIPIX CATALOGUE
TRANSLATE TO ASCII
INPUT FILE = sampin
OUTPUT FILE IS "/tipix/tipfiles/insfile"
RECORD SIZE = 61
COMPILER IS MF
KEY1 IS INS-KEY
KEY2 IS INS-KEY-2
copybook IS COPY "sampcopy"
ID IS INS-IDENTIFIER = "V" USE INSURANCE-01.
ID IS INS-IDENTIFIER = "A" USE INSURANCE-02.
ID IS INS-IDENTIFIER = "S" USE INSURANCE-03.
ID IS INS-IDENTIFIER = "R" USE INSURANCE-04.

The ID IS clauses specify when to use a particular (REDEFINES)
definition of a field that has several formats.

The COPY module referred to in the above example armdata command
file might look like the following:

--
05 INSURANCE.
10 INSURANCE-00.
15 INS-STATUT PIC X.
15 INS-KEY.
20 INS-NUM PIC S9(9) COMP-3.
20 INS-IDENTIFIER PIC X.
20 INS-NO-CONS PIC S9(5) COMP-3.
15 INS-KEY-2.
20 INS-CERTIFICATE PIC S9(9) COMP-3.
20 INS-IDENTIFIER-2 PIC X.
15 INS-KEY-ACCESS PIC X(30).
--
10 INSURANCE-01.

Heritage Support Package for OS/2200

20 Proprietary IP-635

15 INS-IDENTIFICATION PIC X.
15 FILLER PIC X(14).
--
10 INSURANCE-02 REDEFINES INSURANCE-01.
15 INS-TERM PIC X.
15 INS-PROBLEM PIC X.
15 INS-LIFE-ASSUR PIC X.
15 INS-SALARY PIC X.
15 INS-DENTAL-PLAN PIC X.
15 INS-FAMILY-LIFE PIC X.
15 INS-AUTO PIC X.
15 FILLER PIC X(8).
--
10 INSURANCE-03 REDEFINES INSURANCE-01.
15 INS-NUM-CLAIMS PIC 9(2).
15 INS-STATUS-CODE PIC X(6).
15 FILLER PIC X(7).
--
10 INSURANCE-04 REDEFINES INSURANCE-01.
15 INS-STATE PIC 9.
15 FILLER PIC X(14).

The following is an example of the output from armdata:

Using armdata from the command line
The armdata utility recognizes the command line options described in the
following table. In some situations, it may be easier to run armdata via
command line parameters rather than taking the time to create a separate
armdata command file (as described in the previous sections).

OptionFunction

-aname
Add definition to TIP/ix control file. "Name" is the TIP/ix logical file name
defined in the utility SMFILE. This name could be different from the physical
file name.

-b Backup -fi to -fo
-Blocation:length:occurrence

Specifies binary data field, where

location The zero relative offset of the field into the record.

length The number of bytes the field occupies.

occurrenceThe number of times this field is repeated (numeric table.) If the field occurs
once, you may omit this parameter.

-c Create file named by -fo

-
Cfname

The supplied COBOL copybook is located in fname. fname is a COBOL
copybook describing the data in each record of the file being converted. fname
cannot have an extension.

-d Delete file named by -fo.

-e Backup file is in EBCDIC (translate to ASCII). File to be restored is in ASCII
(translate to EBCDIC).

-fi Input file for backup/restore functions
-
Ffname

File to place output from parsing the COBOL header file named in the -C option.
This is optional, but is useful in creating a script file for further manipulation to

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 21

be used as input for armdata. fname can not have an extension.
-fo Output file
-h Display help information
-i Indexed file operation (create)
-I offsetEQstring

Specify processing using IF conditions:

offset Zero relative offset of the field in question (numeric value, for example 105).

EQ One of (EQ, NE, LT, GT, GE or LE) operator used when comparing the field at
location to the string (comparison is for length of string).

stringThe value to search for (alphanumeric, for example, “RED” or “0009”).

IF conditions are followed by mask(s). See Example 4. IF conditions are useful in
processing files that contain records of different layouts. In this case there would be an
overriding set of masks for each IF condition met.

-
j

Create a relative (or line sequential) file as output. These are flat sequential files that
terminate with X'0A'.

-k#:n,m
-k#:fieldname

Key information for indexed files:

key number 1-9

n key location

m key length

fieldnameis the COBOL field name of the key. You MUST supply a COBOL copybook
that contains this fieldname by using the -C option!

-Plocation:length:occurrence

Specifies packed data field:

location The zero relative offset of the field into the record.

length The number of bytes the field occupies.

occurrenceThe number of times this field is repeated (numeric table.) If the field occurs
once, you may omit this parameter.

-q Create a relative (or line sequential) file as output. These are flat sequential files
that terminate with X'0A'.

-Q Do not display or update the number of "Records restored". Specify this option if
you want to redirect armdata messages to a file.

-r Restore -fi to -fo

-
R[S]

Report mode. Interrogate the supplied COBOL copybook and send a report to the
standard output device. The report indicates whether there are fields that need
special attention (binary sensitive) when converting the data.
S (summary) - produce the same information as the plain report mode (R) but
reduce the output to one line per copybook.

Heritage Support Package for OS/2200

22 Proprietary IP-635

NOTE: Inglenet Business Solutions provides a UNIX script called armcbchk that
calls armdata with the -RS option for every file in the directory. This only makes
sense for files that are COBOL copybooks. If there are more than 24 copybooks in
the directory, you would be wise to redirect the output into a separate file, for
example:
armcbchk > filename.

-s Record size of output data file. If a copybook is supplied, the output record size is
obtained from it.

-t Backup file is OS/3 created tape (assumed to be EBCDIC)
-u Backup file is UNIX format
-Ulocation:length:occurrence

Specifies unpacked signed data field:

location The zero relative offset of the field into the record.

length The number of bytes the field occupies.

occurrenceThe number of times this field is repeated (numeric table.) If the field occurs
once, you may omit this parameter.

Since the Micro Focus and MBP COBOL compilers store unpacked signed data
differently, you must specify which compiler you will be using. See the -MF and -
MBP options for more details.

-v Block size of backup file
-x Display status and key information for file -fo
-
y#

Specify (on BACKUP or RESTORE operations) the number of records to skip before
processing begins. Equivalent to the SKIP statement in the armdata command file.

-
z#

Specify the cutoff point, where # is the number of records to backup or restore. Could
be used to load the first few records of a file to create sample data.

Examples

The recommended method is to use an armdata command file as shown
in Example 4.

Example 1

armdata -re -fi/dev/rct0 -fo/u/tipix/tipfiles/newfile \
-P24:4 -B32:2 -U:50:4:6
or
armdmbp -re -fi/dev/rct0 -fo/u/tipix/tipfiles/newfile \
-P24:4 -B32:2 -U:50:4:6

This example will "restore" or copy the file from cartridge tape to the file
called newfile in the tipix file directory. The data located at offset 24 will
be treated as packed data for a length of 4 bytes.

The data at offset 32 will be treated as binary data for a length of 2 bytes.
The data at offset 50 will be treated as unpacked signed for 4 bytes
occurring 6 times. The rest of the data is converted from EBCDIC to
ASCII.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 23

The above example assumes "newfile" already exists. You may create
the ISAM file shell and load it with data all in one step if you wish.

Example 2

armdata -cire -fi/dev/rct0 -fo/u/tipix/tipfiles/newfile \
-k1:0,10 -P24:4 -B32:2 -U:50:4:6 -s120
or
armdmbp -cire -fi/dev/rct0 -fo/u/tipix/tipfiles/newfile \
-k1:0,10 -P24:4 -B32:2 -U:50:4:6 -s120

This example accomplishes the same result as Example 1; and, in
addition, it creates the ISAM shell with the primary key at location 0 for a
length of 10 bytes.

Example 3

armdata -C/tipix/include/CDA -F/u/fred/filemask
or
armdmbp -C/tipix/include/CDA -F/u/fred/filemask

This example interprets the header file CDA in the /tipix/include directory
and places its output in the file /u/fred/filemask. The output is of the form -
P24:4 -B32:2 -U50:4:6, which can be used as an input mask for armdata,
armdmbp or armdmbp4.

Example 4

OPTION METHOD

armdmbp -cire -fixxxfile -fotipfile -k1:0,10 -k2:10,5 \
-MBP -s120 -P24:4 -B32:2 -U:50:4:6 -I99EQ01 -B30:2 \
-I99LT10 -P100:4:2

ARMDATA COMMAND FILE METHOD

armdmbp -Gcmdfile

The armdata command file to perform the above commands would
contain the following:

CREATE
RESTORE
TIPIX FILE IS INDEXED
TRANSLATE TO ASCII
INPUT FILE IS xxxfile
OUTPUT FILE IS tipfile
COMPILER IS MBP
KEY1 IS key1-field-name
KEY2 IS key2-field-name
copybook IS COPY “copy bookname”
ID IS rec-identifier = 1 USE group-item-1.
ID IS rec-identifier < 10 USE group-item-2.

This example reads from the file named xxxfile in the current directory
and writes the converted record to the MBP-ISAM file named tipfile in the
current directory.

Heritage Support Package for OS/2200

24 Proprietary IP-635

Another possibility, with an armdata command file, is to tell TIP/ix get the
real path from the TIP/ix catalogue:

READ TIPIX CATALOGUE

You may use the environment variables TIPTAPE and TIPTAPENRWD
instead of the INPUT FILE = statement.

tipfile will be created with two keys as specified. The data from xxxfile will
be converted from EBCDIC to ASCII and each record will be processed
according to the supplied copybook (armdata command file method) or
with the -P24:4 -B32:2 -U:50:4:6 mask (option method).

In addition, if the record has a "01" at location 99, -B30:2 will be
processed. If the record has a value of less than "10" at location 99, then
-P100:4:2 will be processed. Using the armdata command method,
location 99 will be referenced by a field name; rec-identifier in this case
and you must specify which part of the copybook to use when the
condition is true. Usually certain areas of the file are redefined, each
definition pertaining to a different record type.

Example 5

You may read several files from a tape by creating a file containing
multiple armdata statements and executing that file under a shell.

armdata -cit -fi/dev/rmt/0mn -fopayroll -k1:0,10 -s220
armdata -cit -fi/dev/rmt/0mn -foiven -k1:10,5 -s160

The above example will read two files from the tape drive and create two
indexed files: "payroll" and "inven".

The device driver used (/dev/rmt/0mn) will vary from computer to
computer. When you have multiple files on one tape you need to use a
device driver that will NOT rewind after the end-of-file marker is read. In
the above example the "n" means "no rewind".

(To execute the script, type sh filename.)

Transfer Source Files from 1100/2200

To transfer source programs from the 1100/2200 to UNIX you must first
copy the source files to tape in @COPOUT,S format.

@RUN Batch job
@ASG,TJ TAPEOUT.,U9S . 9-Track unlabeled tape
@ASG,A some-source-lib. . Assign source library
@PRT,TL some-source-lib. . Print table of contents
@COPOUT,S some-source-lib.,TAPEOUT. . Copy to tape
@FREE some-source-lib. . Free library
@MARK TAPEOUT. . Write tape mark
@ASG,A some-proc-lib. . Assign proc library
@PRT,TL some-proc-lib. . Print table of contents
@COPOUT,S some-proc-lib.,TAPEOUT.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 25

@FREE some-proc-lib.
@MARK TAPEOUT.
@FREE TAPEOUT. . Free tape drive
@FIN . End of job

If you are sending the tapes to Inglenet for conversion, be sure to enclose
the printed listings of the tables of contents.

Example: Control with Command Files
To load the source files onto UNIX:

Create command files. For example: specific1 and specific2:

CREATE
RESTORE
BACKUP FILE IS COPOUT
INPUT FILE="/dev/rmt/0mn"
OUTPUT FILE"=/u/spearns/source"

CREATE
RESTORE
BACKUP FILE IS COPOUT
INPUT FILE="/dev/rmt/0mn"
OUTPUT FILE"=/u/spearns/proc"

Run armdata with each command file:

armdata -Gspecific1
armdata -Gspecific2

Example: Control with Environment Variable
To load the sources (from the first file on the tape) onto UNIX:

Export TIPHOMEDATA to the desired output directory. For example:

export TIPHOMEDATA=/u/spearns/source

Create a command file, named generic, which specifies a NO REWIND
tape drive:

CREATE
RESTORE
INPUT FILE="/dev/rmt/0mn"
BACKUP FILE IS COPOUT

Run armdata:

armdata -Ggeneric

On output, every source element becomes a UNIX file.

To load the procs (from the second file on the tape) onto UNIX:

Heritage Support Package for OS/2200

26 Proprietary IP-635

Export TIPHOMEDATA to the desired output directory. For example:

export TIPHOMEDATA=/u/spearns/proc

Run armdata again. Because the NO REWIND drive was specified, the
second file is read:

armdata -Ggeneric

Additional Considerations
Logically deleted records which have a record control byte will be
converted correctly in the following cases:

 the delete flag has its own byte (not part of another field) AND its
value is any displayable character or high or low values (=X”FF” or
=X”00”)

 the delete flag is part of a binary or packed data field AND its value is
not in the displayable character set (includes high and low values)

The above assumes you do not alter the values for =X”FF” and =X”00” in
your EBCDIC to ASCII translate table in case of OS/3 migration. You may
elect to simply not copy deleted records to the tape when creating it.

The delete flag will be lost if it contains a displayable character in a binary
or packed data field OR a non-displayable character in an alphanumeric
field.

The armdata utility can also use the translation tables generated by the
TIP/ix ebcasc utility. For more information, please refer to the ARP-617-
TIP/ix Utilities manual.

Alternatives to armdata
Once you have your data either on a tape drive connected to your UNIX
system or directly on disk, you can write a COBOL program to read the
tape or disk file. This COBOL program would have to know the layout of
the record to convert computational and packed fields properly.

Coming from OS/2200 where data is stored in 9 bit bytes (ASCII), you will
usually need armdata to convert your data properly. However, if your data
is all character and displayable numeric, you can either:

 Use any FTP product.
 Create an interchange tape.
Coming from OS/3, the data must always be converted from EBCDIC to
ASCII.

D-ISAM Error Codes
The following table is from the D-ISAM file system documentation, a
product of Byte Designs Inc. that is included in TIP/ix. armdata intercepts
and interprets some common errors, but this table provides a complete
list of the possible errors that can be returned by D-ISAM.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 27

The error message text depends on the application program (such as
armdata), but generally is of the form: "Error ### accessing file" (###
represents an error number greater than 99. Errors less than 100
generally emanate from the UNIX system and can be found in
/usr/include/sys/errno.h.

Error Description

100 An attempt was made to (re)write a duplicate where
duplicates are prohibited, or an attempt was made to
REWRITE(F) where the primary key permitted
duplicates.

101 The fd parameter does not reference an opened file.

102 One of the arguments has a value with no defined
meaning.

103 The values of key are not valid.

104 All ISAM file descriptors are used, you cannot open any
more files

105 The ISAM file is corrupted, it must be repaired with
DCHECK.

106 Exclusive access to the file is not possible.

107 Another process has a read-only lock on the requested
record.

108 The value of key has already been established as a key.

109 The requested function may not be performed on the
primary key, as requested.

110 The beginning or end of the file has already been
reached.

111 No record was found to match your request.

112 There is no "current" record set at this time.

113 The file has been exclusively locked by another process,
or if trying to establish an exclusive lock, another
process is using the file.

114 The name given for the file is too long or contains
unacceptable characters.

115 The lock file cannot be created. Presently not used by D-
ISAM.

116 malloc() cannot allocate the request. Usually means out
of memory, but possibly the allocation list is corrupted.

Heritage Support Package for OS/2200

28 Proprietary IP-635

armrpg - RPG-ll to COBOL Converter
The armrpg utility converts RPG II source code to COBOL-85 source.
Batch RPG, online IMS RPG, and TIP/1100 RPG programs may be
converted to COBOL source for use with the Micro Focus or MBP
compilers.

It is recommended that the RPG code is tested for clean compilation on
the mainframe before going through the conversion process.

Environment Variables

Variable Description

TIPRPGLDA See Support for Local Data Areas later in this
chapter.

TIPRPGLPP Specify the default value of Lines-per-Page, to
be used if the RPG program does not contain L-
Spec cards.
If neither L-Spec cards nor the TIPRPGLPP
environment variable are given, the default is 57.

For a combined list of TIP/ix, HSP/80, HSP/22, and other related
environment variables, browse the file $TIPROOT/scripts/arm.tipsetenv.

Syntax
armrpg [options] file [... filen]

Where:

file
The name(s) of the RPG file(s) you wish to convert to
COBOL 85 (with or without the extension). The armrpg
utility creates a COBOL source file with the same name as
your original filename. The extension depends on the type
of the source program:

Extension Converted From
.bat batch RPG programs.
.cbl on-line TIP/1100 RPG programs.
.ims on-line IMS/1100 RPG programs.

The following options are available:

-a Force a full screen transmit. This is required for
UNISYS-style "WorkStation" programs.

-b Remove all BLOCK CONTAINS clauses from the
output COBOL.

-c When you specify -c, but not -os3, armrpg assigns
the RPG program control stream reader (CTLRDR)

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 29

to standard input instead of a disk file. This permits
the RPG program to "read" control stream card
images from the shell script. This can simplify the
creation of shell scripts for RPG programs that do
not have extensive input parameters.

-d Insert runtime COBOL debugging statements in
output source code.

-E[X] Specify the letter to substitute for the hyphen in the
LFD name. The default is uppercase X. Do not
specify a lowercase letter.
If specified, this option must be by itself or as the
last option in a string because it expects a
character following it. For example:

armrpg -dEZ

The mechanism used depends on which COBOL
compiler you are using:
Micro Focus

Adds the keyword ‘EXTERNAL’ to the
ASSIGN clause.
When you use armrpg -EX with Micro
Focus, you must use armjcl with at least the
following options:
armecl -EX

MBP Place the ASSIGN file name inside quotes.
This tells MBP to use the value inside the
quotes as the name of an environment
variable that contains the complete file path.
MBP will prefix V_ to the name of the
environment variable.

Example:
The LFD name is FR-ED. armrpg changes
this to FRXED. At run time, the application
gets the filename from the V_FRXED
environment variable.
When you use armrpg -EX with MBP, you
must use armecl with at least the following
options:
armecl -V -EX

Reminder: You must specify the compiler.
Either: select the -mf or -mbp option, or set the
COBOL environment variable to mf or mbp.
If neither -F nor -E is specified, armrpg will create a
file-assign table (in the translated COBOL code) to
define the location of the specified LFD. For details,
see Logical to Physical Filename Resolution in the
armcob chapter.

-foutfile
Specify output filename. This overrides the
defaults: (filename.bat, filename.ims, filename.cbl)

Heritage Support Package for OS/2200

30 Proprietary IP-635

-bgrpname
is the group name for the screen formats. It is
assumed that all screen formats are in the same
group.

-mf
The target compiler is Micro Focus COBOL. This is
the default.

-mbp
The target compiler is MBP COBOL

-os3
The target compiler is OS/3 COBOL-85.

-q Run in quiet mode. (Do not display informational
messages.)

-r (Was -s.) Change COBOL statements in the FILE
DEFINITION section from “ORGANIZATION
SEQUENTIAL” to “RELATIVE”.

-w[e] Warn of potential character set dependencies. (for
example, the RPG MHHZO verb may fail on the
ASCII character set).
The ‘e’ option causes the converter to place the
string “INTENTIONAL ERROR” in the COBOL
source instead of displaying an error message on
the screen (for example, “SORTA unsupported”).

-IBM3 Produce code to support the IBM System/3 mode
related to handling skip channel numbers. For
example, “skip before channel value = 49” means
“skip to output line number 49 before printing the
next line”.

-ibm Cause armrpg to use one more character for file
names (UNISYS can have 7 characters while IBM
can have 8 characters in a file name).

-u Support UPSI bytes.
-7 Interpret any RPG tables that start in column 7 as if

they had started in column 1.
RPG expects tables to start in column 1. By default,
the fse editor uses columns 1-6 for sequence
numbers. This option tells armrpg to expect RPG
tables to start in column 7.

Additional considerations

The armrpg utility does not handle WORKSTATION RPG programs
(batch RPG programs with screen IO embedded in them). The conversion
utility will process the code, but a manual modification process will be
required.

With the TIP/30 product a conversion utility exists (transaction name is
RPGCNV) to convert workstation RPG programs to TIP/30 RPG
programs. Perform this step first on the System/80 TIP/30 system, then

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 31

proceed to run the resulting RPG program through armrpg. This creates
an on-line TIP/ix COBOL program.

Support for Data Structures

Data structures declared in RPG are implemented as a series of data
entries using REDEFINES clause. If a field appears as a data structure
name or as a data structure sub-field name, the physical space reserved
for that field is under these REDEFINES clauses, regardless of where the
field was defined.

armrpg does not support the reorganization of fields in input records.

Support for Local Data Area

The armrpg utility uses a library function, tiplda, for getting and putting the
local data area when the program starts and ends, respectively. The
module tiplda.o should be in libbat.a, libims.a, or libtip.a for compiling the
COBOL programs properly.

If the converted program is started:

without ECL
The local data area is implemented as a data file in the
user’s home directory. An environment variable
TIPRPGLDA can be used to define a unique local data
area for the user. Unlike that in RPG, it is the user’s
responsibility to make sure that the local data area is
unique for each job or each login session.

For example, the user can define TIPRPGLDA=$$ (and
export it) to use the process number of current process.
Since the process number is unique, so does the local
data area. The name of the data file is
lda.data$TIPRPGLDA.

with ECL
A temporary file, $TIPCOM/lda.data, is created for each
job and used as an LDA.

armsort - Mainframe compatible sort
The purpose of the armsort utility is to provide some of the capabilities of
the 2200 SORT utility. It is usually used in conjunction with the armecl
utility which outputs a shell script, to execute armsort when it encounters
a sort statement.

Heritage Support Package for OS/2200

32 Proprietary IP-635

Unsupported Keywords
Some SORT-1100 keywords do not apply to UNIX. Others just haven't
been implemented yet. Customer requirements will guide future
development efforts.

Currently, armsort ignores the following keywords:

ESTIMATE RETRIEVE TAG

REELS TAGFILE EQUIP

ISKEYW JOIN LABEL

MSKEYW PREP PRESERVE

SPLIT DATA KEYW

DRUM FAST TAPES

ALLOW CHECK CHECKSUM

CKPT CONSOLE DELCOM

DELLOG FILEID LIMDRM

LIMFST LOG MOVE

NUMREC OWN REJECT

SEQ SEQA SEQC

Environment Variables

TIPSORTWORK

Can be used to specify the name (and thus the Directory Location) of
a temporary tag file used for the UNIX sort procedure. If this variable
is not defined, a normal UNIX temporary file (in /tmp then /var/tmp
directory) is used.

TIPLOCKWAIT Controls how long armsort will wait for a file.

Value Action

Unset No waiting. If the file is locked, armsort will abort with Exit-Status of
1.

Zero or
negative armsort will try to re-access a locked file every 60 seconds.

Positive n armsort will try every n seconds.

TIPHEAPS
Set to Y to use the in-memory heap-sort algorithm in place of the
Syncsort and the UNIX sort command. Tests have shown this
method is faster.

TIPSYNCS When the TIPSYNCS environment variable is defined (set to
anything), armsort uses Syncsort instead of the standard UNIX

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 33

sort command.

TIPTYPEIN and
TIPTYPEOUT
(formerly without a
TIP-prefix)

Can be used to change the default type of the Input and/or Output
files (respectively) from ISAM to either ASCII or DAM. That is,
if either variable is set to “ASCII” or “dam”, the corresponding
(input or output) file would have that type instead of the default
ISAM.

TIPCENTURY
If this variable is defined and numeric, then the value is used for
the century break year. The default value for the century break
year is 50.

TIPUDT

As UNIX does not examine tape labels to verify that the tape
actually mounted is the one that was requested, you might want to
simulate labeled tape files on disk.
Set the TIPUDT environment variable to the directory where you
want to simulate a tape file.
set TIPUDT=/home/ian/tape

TIPDEBUGALL=y Print a sort diagnostics report. This has the same effect as coding
DEBUG=ALL in the sort command lines.

For a combined list of TIP/ix, HSP/80, HSP/22, and other related
environment variables, browse the file $TIPROOT/scripts/arm.tipsetenv.

Syntax

armsort -c file [-d | -3 | -O] [-f] [-
t'c']
armsort [-d | -3] [-f] [-t'c'] <<
'endstring'
statements
endstring

Where:

-c file The named "file" holds the processing statements. If this
option is not specified, the standard input stream is read
for the statements.
To read the processing statements from within a script, use
a "here" file as illustrated in examples shown later in this
section.

-d The called function is OS/3 DATA/MILOAD and the
processing statements will be in that format.
This option permits file disk-to-disk copy, creating ISAM
files from sequential input or creating a sequential file from
ISAM input.
The UCP, UDD, UDP, UTP, SEL, SELOR, SELAND, DEL,
DELOR, and DELAND statements are accepted.
For example, armsort -d (in the converted ECL-Script) will
copy the contents of $INPIT1 to $PRINTR, $CARD1 to
$PRINTR, and $TAPEIN to $PRINTR as the result of UDP,
UCP and UTP commands respectively while recognizing

Heritage Support Package for OS/2200

34 Proprietary IP-635

all the three forms of OC, OX & OB.
Input file(s) is defined by the environment variable(s)
INPUT1, INPUT2, etc. The output file is defined by the
environment variable OUTPUT1.

-3 The called function is OS/3 SORT3 and the ‘processing
statements’ will be in that format.
If the Input file is in sequential format, armsort can not
determine the record size. Columns 35 through 38 of the
"H" (header) card may be used to specify the input record
size. If this is not specified then the input record size is
assumed to be the same as the output record size.
The input file is defined by the environment variable INPUT
(for one file), or INPUT1, INPUT2, (if there are several
files).
Output file is defined by the environment variable
OUTPUT.

-O Use OS/1100-SORT command format. Otherwise, normal
SORT Commands are expected.
When using the OS/1100-Sort function of ARMSORT, the
following two keywords can be used:

SKIPL=<no.>
for specifying the no. of records to be skipped from
the beginning of Input-File(s).

RECNUM=<no.>
for specifying the no. of records to be sorted from
Input-File(s).

Note : For detailed description, please see the OS/1100-
Sort Manual

-f Force lowercase letters to be treated like uppercase when
sorting .

-s Use Syncsort instead of the UNIX sort utility. If the
environment variable TIPSYNCS is set, this option
becomes the default.

-t'c' Specify the character to use to separate fields in the
temporary tag file created for sorting.

endstring
A string to mark the end of the processing statements. “/*”
is often used.

statements
Processing statements that are understood by the sort
utility you use.
For example
SORT FIELDS=(2,18,CH,A)
If you are using Syncsort, you can pass a command line
option to the Syncsort program:

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 35

sscard option
For example:
sscard /memory 15 megabytes

If options -d , -3 and -O are all missing, the SORT function is assumed
and the processing commands will be in that format.

In this case, all the SORT OPTION parameters are ignored. Many of the
other parameters are accepted, but since they are irrelevant on UNIX
they are ignored as well. The sort field and record size information are
used.

 Input files are defined by the environment variables SORTIN1,
SORTIN2 ,

 Output file is defined by the environment variable SORTOUT.

Using armsort

EXTENDing the Output Files
To make armsort to add the input records to the output file (instead of
initializing it), define the TIPEXTEND environment variable
(TIPEXTEND=Y;export TIPEXTEND).

After executing armsort, you must unset this environment variable to
avoid having this behavior applied to any following armsort commands.

If the EXTEND keyword is used with the @USE in a ECL file, the
armexec function (in the converted ECL file) sets and unsets this variable.

EXTENDing the Output Files
To make armsort to add the input records to the output file (instead of
initializing it), define the TIPEXTEND environment variable
(TIPEXTEND=Y;export TIPEXTEND).

After executing armsort, you must unset this environment variable to
avoid having this behavior applied to any following armsort commands.

If the EXTEND keyword is used with the @USE in a ECL file, the
armexec function (in the converted ECL file) sets and unsets this variable.

Specifying Record Size for SDF Input Files From OS1100/2200
armsort is able to figure out the record size of input file except SDF files.
In this case, armsort cannot find out record size directly from the structure
of the file. Therefore, a new parameter, RSZIN has been added to the
parameter set for OS1100/2200 files. This parameter specifies the record
size of input file explicitly, thus allow users to handle the cases in which
the record size of output file is different from the record size of SDF input
file. Note that, if the input file is an ISAM file, armsort should be able to
find out the record size itself without the RSZIN parameter.

Heritage Support Package for OS/2200

36 Proprietary IP-635

Example:

SORTIN1=nmbrs; export SORTIN1
SORTOUT=nmbrs.srtd; export SORTOUT
rm -f $SORTOUT $SORTOUT.*
armsort -O -t':' << end-of
FILEOUT=SORTOUT BLOCK=27
FILEIN=SORTIN1 MODE=SDF BLOCK=27
DEBUG=ALL
RECORD=10
BIAS=1069
LINKSZ=1069
RSZIN=10
RSZ=20
KEY=1,7,R,$2
DISKS=3
end-of

In this example, the record size of SDF input file is specified as 10 bytes
while the record size of output file is 20.

Additional Debugging Information
When armsort runs it normally writes minimal information to the armecl
system log, $TIPHOMEDATA/log/log.ccyymmdd. It only tells you that it
ran, and the input and output record counts.

To produce a more detailed audit trail, specify the DEBUG=ALL
parameter. This provides: input and output record counts, the full path of
input and output files, record size, and the location of keys.

Some users find it clutters up the log, but we like it because:

 there is not much overhead, and
 this information can be very useful when tracking down a problem.

Extension of MODE for OS1100/2200 SORT
In OS1100/2200 SORT, MODE can be either SDF or MSAM. armsort,
however, accepts another, UNIX for specifying plain UNIX files for
FILEIN, FILESIN, FILEOUT. MODE=UNIX can also be used for global
MODE.

Alternatives to armsort
The UNIX sort command can be used for sorting records if records are in
ASCII code and in a UNIX text file. Commercial sorting packages are
available from other vendors, and you may incorporate them into your
systems.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 37

Supported OS/2200 APIs

Common Issues

Supported 1100 APIs
This chapter outlines the 1100/2200-API functions that TIP/ix 2.2
supports. There is a common section, and a section for each set of APIs.

Common Issues
This section describes the issues that are common to the entire
1100/2200-API. Read the sections on individual APIs for other anomalies.

Function Names
With TIP/ix, any dollar sign ‘$’ in a function name must be replaced with
an underscore ‘_’. Thus a DPS function D$FuncName must be invoked
as D_FuncName in the TIP/ix environment.

Why? Because Micro Focus COBOL does not allow a ‘$’ sign in function
names.

Size of Variables
The 1100/2200 supports PIC 9(10) COMP (which translates to 8 bytes on
UNIX). However, with TIP/ix, these variables have been all been changed
into PIC 9(9) COMP (4 bytes on UNIX).

You must ensure that this translation takes place when transporting the
existing applications to TIP/ix. Failure to do so will result in unpredictable
results.

Demand Mode Processing not Supported
The 1100 APIs in this release do not support demand mode processing.

Compiler Options
To use the 1100/2200 APIs you must link-edit your application with the
lib2200.a library. The following makefile is for Micro Focus COBOL:

Modified to handle .tip
#
.SUFFIXES: .c .ims .tip .cbl .cob .bat .rpg .dml .sub

SCHEMA = n0tf0001psch
INC = $(TIPROOT)/include:$GUNHOME/tt/copy
BIN = $(GUNHOME)/tt/live
LIB = $(TIPROOT)/lib/libtip.a
LIBT = $(TIPROOT)/lib/ -l2200
BAT = $(TIPROOT)/lib/libbat.a

Heritage Support Package for OS/2200

38 Proprietary IP-635

LINK = $(LIB) -lc
LINKT = $(LIBT) -lc -lm
#MFCOB = -gUa -C "IBMCOMP NOWARNING VSC2"
MFCOB = -gx -C "IBMCOMP NOWARNING VSC2"
INCIMS = -I RETURN -I BUILD - I GET -I GETUP
INCTIP = -I TIPPRINT -I TIPFCS -I TIPMSGO -I TIPQUEUE
-I TIPPEER -I TIPRTN

Following is for IMS transactions using the Micro
Focus COBOL
.ims:
genmain -im $* main$*.c
cob -c $(MFCOB) -k $<
cob $(MFCOB) main$*.c $< -o $* $(LINK)
rm -f $*.o main$*.o main$*.c

Following is for TIP transactions using the Micro
Focus COBOL
.cob .cbl .dml:
genmain -m $* main$*.c
cob $(MFCOB) main$*.c $< -o $(BIN)/$* $(LINK)
$(INCTIP)
rm -f $*.o main$*.o main$*.c

Following is for TIP transactions using the Micro
Focus COBOL
make the object first, then genmain with -1, then
link
.tip:
cob -c $(MFCOB) -k $<
genmain -1m $* main$*.c
cob $(MFCOB) main$*.c $*.o -o $* -L$(LINKT)
rm -f $*.o main$*.o main$*.c

Following is for batch Cobol programs
.bat:
cob -c $(MFCOB) -k $<
cob $(MFCOB) $*.o -o $(BIN)/$* $(BAT)
rm -f $*.o

DPS API

TIP/ix supports the following DPS/1100 functions:

Init & terminate

D$INIT

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 39

D$CLOSE

D$TERM

Input and Output

D$OPEN

D$GETFL

D$GETFL1

D$GETLI

D$GETLI1

D$GTSCN

D$READ

D$RETRANSMIT

D$PTSCN

D$RESET

D$SEND

D$SENDF

D$SENDF1

Paging

D$CALLPG

D$ENDPG

D$PAGEST

D$RELEASE

D$REPLACE

D$RETR

D$STORE

Error Handling

D$DISPLAYERR

D$ENDMSG

D$ERRMSG

D$FLDERR

D$RETURNERR

Heritage Support Package for OS/2200

40 Proprietary IP-635

D$SENDERR

D$USERMSG

Scratch Area

D$GETSCR

D$PGETSCR

D$PPUTSCR

D$PUTSCR

User Special Field Functions

D$CLCONV

D$SETCV

D$SETRX

Destination Selection Functions

D$PASSOFF

D$ABORT

D$DUMP

Program Recovery

D$CLRRCB

D$GETRCB

D$SETRCB

Integrated Recovery Initialization

D$INIT2

D$INIT3

Output

D$CANCEL

D$CKPT

D$ENQUEUE

D$OUTPUT

D$PASSOFF1

D$PRTLINE

D$SEND1

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 41

Input

D$DISRCV

D$INPUT

D$RELINP

Recovery

D$COMMIT

D$ROLLBK

The following DPS APIs are not supported:

D$INIT1, D$LINIT1, D$FINISH, D$GETIN, D$GETRESET,
D$GTEMPLATE, D$GTSCN1, D$PTEMPLATE,
D$RESEND, D$SETPAG, D$STOREI, D$USERERR,
D$GETDEVICE, D$GETTERM, D$SETDEVICE,
D$SETTERM, D$GETUFLD, D$PUTUFLD, D$SETRX1,
D$BELL, D$SENDBELL, D$CHGPID, D$CONFIGRET,
D$CONFIGSET, D$GETWSDEF, D$RESUME,
D$SUSPEND, D$GETTRACE, D$GETWS, D$LOGOFF,
D$SCRGET, D$INIT4, D$CLRLST, D$SETLST, D$AUDIT,
D$CLLINK, D$SETLINK, D$PIDSTAT.

Raw Input/Output Functions
The current implementation only supports UTS 400 compatible FCCs in
the following raw input functions:

D$GETFL
D$GETFL1
D$GETLI
D$GETLI1

The function D$PTSCN does not support the translation of UNISCOPE
screen to IBM 3270 or the Dataspeed protocol.

Paging Functions
The current implementation fully supports OS/1100 paging functionality
with one exception: the index pages are not supported. As a result the
function D$STOREI is not implemented and in function call D$RETR the
negative page numbers (index pages) are not supported.

TIP/ix provides two configuration parameters to enable you to use disk
space efficiently:

Parameter Description

DPSPAGESIZE Set a limit on the size of a page. An average
screen must fit in this space. The default is
4096 bytes.

Heritage Support Package for OS/2200

42 Proprietary IP-635

DPSMAXPAGES Set the maximum number of pages to be
stored in the paging file. The default is 20.

Pager Utility
The user interface for the pager is different from the one for the DPS-
1100. See tippager in the TIP/ix Utilities manual.

Scratch Functions
The TIP/ix implementation of the scratch functions (D$PUTSCR,
D$GETSCR, D$PPUTSCR, D$PGETSCR) requires the CDA area to be
defined. This can be done in the smprog entry of a program using the
scratch functions. The size of the CDA defined must be equal to or
greater than the size of the internal scratch area used by the program.

Integrated Recovery Environment (IRE) Functions

To determine if a function is implemented in TIP/ix, see the summary
table above. This subsection addresses only the functions that differ from
their counterpart in OS/1100.

Calling Sequence for DPS 1100 Functions
COBOL:

CALL 'function' USING DPS-STATUS,
arg2,
arg3,
arg4

Note: On TIP/ix the dollar sign ($) in the DPS 1100 function names has been
replaced by underscore (_), for example, 'D$INIT' becomes 'D_INIT' on
TIP/ix. For consistency, the functions described below still use the original
name.

Function Difference

D$INIT2 Session control options (RP$OPT2) and
parameter RP$PAR3 are not supported.

D$INIT3 Session control options (RP$OPT2) are not
supported. RP$PAR4 is set to 1 on return for
all cases.

D$CLRLST and
D$SETLST

Not supported. Output functions such as
D$SEND always send a message to the
terminal where the DPS application is run.
However, the function D$SEND1 accepts
user-supplied MDL as a parameter and
sends messages accordingly.

D$AUDIT This function outputs text to the TIP/ix log file.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 43

There is no dedicated audit file for it.

D$CANCEL The whole message will be discarded
regardless of the parameter RP$MSGID. The
message identifier is not supported.

D$CKPT Messages can be sent in multiple segments.
However, segments are sequentially put
together to form one single message and no
message identifiers are assigned. The
parameters RP$AUXLEN, RP$MSGID,
RP$MSGNBR, and RP$STEP are not
supported.

D$ENQUEUE Messages can be sent in multiple segments.
However, segments are sequentially put
together to form one single message and no
message identifiers are assigned. The
parameters RP$MSGID is not supported.

D$OUTPUT Messages can be sent in multiple segments.
However, segments are sequentially put
together to form one single message and no
message identifiers are assigned. The
parameters RP$AUXLEN, RP$MSGID,
RPDEV, RPPDEV, and RP$STEP are not
supported.

D$PASSOFF1 Messages can be sent in multiple segments.
However, segments are sequentially put
together to form one single message and no
message identifiers are assigned. The
parameters RP$AUXLEN, RP$MSGID,
RP$MSGNBR, and RP$STEP are not
supported.

D$PRTLINE The parameter destination is not supported.
This function always sends output to the
TIP/ix default printer PRNTR. The
parameters RP$MSGREC, RP$MSGID,
RP$PDEV, RP$DEV, and RP$SETP are not
supported.

D$SEND1 Multiple destinations are supported.
However, if the message is sent to
destinations other than the terminal where
the application is run, it will be sent as an
unsolicited message. Parameters
RP$MSGID and RP$STEP are not
supported.

D$DISRCV Not supported. A call to this function returns a
fatal error.

D$COMMIT The functionality is the same regardless of

Heritage Support Package for OS/2200

44 Proprietary IP-635

the option specified by RP$OPT1. The
parameter RP$OPT2 is not supported.

D$ROLLBK The functionality is the same regardless of
the option specified by RP$OPT1 and
RP$OPT2. The parameter RP$STEP is not
supported.

Integrated Recovery Functions
This section describes the differences between OS/1100 integrated
recovery and the TIP/ix implementation.

Of all the integrated recovery components, exec audit does not fully
function yet and won’t be used for recovery. Universal Data System
Control (UDS Control) and Integrated Recovery Utility (IRU) are not
implemented as components while some of their functionalities such as
file restore or recovery are available in TIP/ix.

Currently, the TIP/ix implementation cannot reschedule input messages
that the system had not completely processed because of a failure. Nor
can it resend output message that terminals did not yet receive. Message
recovery is not available.

Application group is not implemented.

Auxiliary data are not supported.

MCB API

TIP/ix supports the following MCB APIs:

MCB Function TIP/ix Function

TRINIT$$ FTRINIT

TERM$$ FTERM

RECV$$ FRECV

CANCEL$$ FCANCEL

SEND$$ FSTORE

PASOFF$$ FPASOFF

ENQUE$$ FENQUE

CHKPT$$ FCHKPT

The following MCB APIs are not supported:

COMMIT$$, ROLLBAK$$, INPREL$$, AUDIT$$,
DISREC$$, OPNSSN$$, CLSSN$$, PIDSTAT$$,
SETXUSE$$, CLRXUSE$$, SETIXUSE$$, STAT$.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 45

Differences in TIP/ix Implementation
MCB programs will require some changes, implemented either manually
or through ARM utilities, to be able to run in the TIP/ix environment.

PACKET copybook
A new copybook called “PACKET” forms the basic block for delivering
messages between the MCB program and TIP/ix. Your existing programs
may use something similar. However, PACKET will be different in the
following respects:

 The names of the fields have been changed from P$FieldName to
MCB-FieldName to avoid ‘$’ signs.

 The 9 bit bytes of the 1100/2200 environment have been changed to
8 bit Bytes for the TIP/ix environment.

 For the sake of alignment, some fields were moved around notably
MCB-BUFF and MCB-MDL and some filler bytes were added.

The copybook PACKET is available in the global include directory of the
TIP/ix environment (/u/tipsrc/include).

Facility Field (FAC)
The MCB-FAC, the facility field, is always set to 0 indicating normal use of
resources.

Message ID Field
In general, the MCB-API does not support a message recovery
mechanism. As a result the values of the MCB-ID, the message id field,
will be interpreted as such: 0 indicating a new message while any other
positive value indicates a previous message still residing in the buffer.

Operational Mode
The MCB-MODE, the mode of operation field, supports the normal mode
(0) and the test mode (2) only. The training mode (1) and the test/training
mode (3) are translated to the test mode (2).

Transaction Code
The TC1 and TC2 fields have been replaced by an equivalent single
MCB-TC field.

Fields Not Supported
The following fields are not used in the PACKET.

MCB-RTN

MCB-REQUE

MCB-RECOPT

MCB-ERR

MCB-NODE

Heritage Support Package for OS/2200

46 Proprietary IP-635

MCB-RUNID

MCB-OS1

MCB-OS2

COMPOOL Support

TIP/ix supports the following compool primitives:

Function Description

CINIT Initialize the compool environment.

CCDTAC Get the raw message for the application without
releasing the message.

CCDTCR Get the raw data and then releases the message.

CCSTLG Store an output message.

CCSTOV Overlays an output message on top of an existing
output message.

CRELOG Release any outstanding message.

CRTRNO Send an output message.

CTRMN8 Terminate the transaction.

CRTRNU Pass a message to another transaction.

The following are not supported:

CRTSCH, CRTOTP.

Differences in TIP/ix Implementation

TIPMPA copybook
The TIPMPA copybook may look slightly different from site to site, so you
may need to look at any programs using compool very closely. The
TIPMPA copybook accommodates the 9-bit bytes of 1100 systems into
the universal 8 bit bytes (with the necessary expansion of fields where
required).

KONS API

TIP/ix enables KONS users to continue using 1100/2200 KONS functions
in on-line transactions (under TIP/ix). TIP/ix provides:

 a user KONS area and a security directory.
 the ability for transaction programs to update the KONS security

directory and the protected area S2 and U1.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 47

 16 KONS functions for use with UNIX COBOL programs.

Parameters
All numeric parameters (COUNT or INDEX) use one-word (four-byte)
data items. For example: PIC 9(9) COMP.

Configuration Parameters
Configuration parameters are environment variables (which can also be
set in the TIP/ix configuration file tipix.conf). FALSE is 0 and TRUE is
non-zero.

Parameter Description

KONSBL Length in bytes of the U3 block in the user KONS
area. The default is 0. The value should be an
integral divisor of KONU3L to avoid unused space.

KONSEC Length in bytes of the write-protected U1 area of
the KONS file. The default is 0.

KONSFL Length in bytes of the U1, U2, U3, and security
directory areas of user KONS. The default is 0.

KONSPW Set KONSPW to TRUE to require a password for
access to a U3 KONS block. The default is FALSE.

KONU3L Length in bytes of the U3 area of the user KONS
file. The default is 0.
This area is lockable in blocks of size KONSBL.
A password can be required for block access if
KONSPW = TRUE.
If set to 0, the KONS U3 logic is disabled.
If KONU3L is set, then KONSFL must be set to at
least KONU3L+4.

KSECNB Number of entries in the security directory for the
U3 area of the user KONS file. The default is 0.
The security directory is located at the end of U3
area and requires 8 bytes per entry. This space is
allocated regardless of the value of KONSPW.

KONS File Layout
The layout of KONS file is shown below, where:

SECURL = KSECNB*2.

Structure of Directories
The structure of the KONS directory is shown below:

These functions are added for handling DIRECTORIES. The functions
can be called using ‘CALL “CKONS”’ from COBOL programs. These

Heritage Support Package for OS/2200

48 Proprietary IP-635

functions are intended for internal use for writing a utility that handles the
KONS file (initialize, test, load, and update).

DIRRD DIRECTORIES READ. It has the following one parameter:
BUFFERArea that holds the entire DIRECTORIES table.
DIRWR DIRECTORIES WRITE. It has the following one parameter:
BUFFERArea that holds the entire DIRECTORIES table.

Another version of the format is that the end block number is stored
instead of the number of blocks. However, the above is the version that is
used in TIP/ix KONS.

KONS Functions
There are 16 KONS functions for accessing the KONS file. For details,
see the OS 1100 Transaction Processing Programming Reference
manual (UP-8296.8-C).

KONS
Function

Notes

CUPDAT

FILLWR

KRDLK

KREAD

KWRITE

KWRKP

KWRUN

LUPDAT

MSREAD

SCATRD

SEQSRD

SERCHR

SREAD

SUPDAT

SWRITE

UNLOCK UNLOCK is implemented as UNLOCKX
(because UNLOCK is a reserved word in
COBOL).

copybook for COBOL Programs
There is a copybook for COBOL programs which use TIP/ix KONS
functions. This copybook, SYSDEF, defines function codes including

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 49

CUPDAT, FILLWR, KRDLK, KREAD, KWRITE, KWRKP, KWRUN,
LUPDAT, MSREAD, SCATRD, SEQSRD, SERCHR, SREAD, SUPDAT,
SWRITE, and UNLOCK.

S and S + Q Options
The S Option is implemented as the security level SYST and the S + Q
Option is implemented as the security level MAST. The security check
follows the usual rules used in TIP/ix. One significant difference is that the
user’s security overwrites that of the transaction. For example, if the
transaction using CKONS functions is at the security level PROG while
the user is at SYST, when the user runs the transaction, the process gets
security level SYST which means the S Option is set.

Error Messages
There are 15 system error codes for KONS in OS 1100. Those that are
implemented in TIP/ix are indicated by *.

Code Description

01 Program attempted an operation outside the KONS
area.

01 Program attempted an operation outside the KONS
area.

02 Program attempted to write into S1 portion of system
KONS.

03 Program attempted to write into S2 portion of system
KONS or U1 area of user KONS without “write” option
set.

04 Program’s buffer is outside the program’s limits.
Specified buffer length exceeds the amount actually
provided.

05 Illegal partial-word designator or partial-word descriptor.

06 Illegal function code.

07 Program attempted to use a search function in the
system KONS area.

10 Illegal security operation. The option bit not set for
writing or reading into the security directory, or attempt
has been made to perform any security operation
without proper security code.

11 Attempt to access U3 area with incorrect function.

12 Attempt to perform any lock function past the end of the
block.

13 Requested block is not locked.

14 Attempt to allocate request buffer failed, or reject was
received while attempting to read the file directory.

Heritage Support Package for OS/2200

50 Proprietary IP-635

15 File is locked.

16 User has maximum number blocks allowed.

17 Excessive activity caused maximum number of retries to
obtain lock.

FCSS API

This section includes the on-line FCSS functions. These functions are
also available to batch connected programs.

UCS COBOL

CALL "FCSS" USING func,
return,
buffer,
fileNumber,
wordCount,
bufferSize

ASCII COBOL

CALL "CFCSS" USING func,
return,
buffer,
fileNumber,
wordCount,
bufferSize

or

CALL "CBFCSS" USING func,
return,
buffer,
fileNumber,
wordCount,
bufferSize

Where:

func Function code

return Logical file name packet.

buffer Record area where status information and line data is
placed

fileNumber
Number of file to access

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 51

wordCount
Count of data words in buffer

bufferSize
Count of total words in buffer; ignored

The function code values and return code values are defined in the TIP/ix
copybook TC-FCSS.

The bufferSize parameter is no longer used in 1100/2200 environment
and is not validated.

The buffer argument in 1100/2200 contained 3 words of status and file
information followed by a user determined amount of data, the wordCount
parameter specifying how much data was available. Unavoidably the
format of the buffer status area has changed and is in fact larger in the
TIP/ix environment. Careful attention must be paid to the buffer argument
in the conversion process. There was no 1100/2200 standard copybook
describing this region, but one has been added for TIP/ix, it is TC-
FCSSU.

* *
* TIP/ix FCSS User Buffer copybook *
* *

02 FCSS-BUFFER-STATUS.

10 FCSS-BLOCK-ZERO.
15 FCSS-ERROR-FLAG PIC 9.

88 FCSS-GOOD VALUE 0.
88 FCSS-ERROR VALUE 1.

15 FCSS-RECYCLE-FLAG PIC X.
15 FILLER PIC X(9).
15 FCSS-COMPLETE-FLAG PIC 9.

88 FCSS-NOT-DONE VALUE 0.
88 FCSS-DONE VALUE 1.

15 FCSS-RQSTAT PIC 9(4) COMP.
15 FCSS-PFD.

20 FCSS-BIT-17 PIC X.
20 FCSS-BIT-16 PIC X.
20 FCSS-BIT-15 PIC X.
20 FCSS-BIT-14 PIC X.
20 FCSS-BIT-13 PIC X.
20 FCSS-BIT-12 PIC X.

15 FCSS-FCSSD PIC 9(4) COMP.
15 FILLER PIC X(2).

10 FCSS-BLOCK-ONE.
15 FCSS-L2STAT PIC 9(4) COMP.
15 FCSS-L1STAT PIC 9(4) COMP.
15 FCSS-DIADR PIC 9(8) COMP.

10 FCSS-BLOCK-TWO.
15 FCSS-BTMASK PIC 9(8) COMP.

02 FCSS-BUFFER-DATA.

Heritage Support Package for OS/2200

52 Proprietary IP-635

Supported FCSS functions
Func Description Notes

AD Write a user record to the
journal file.

FL Lock a permanent file from
all accesses by other
programs. Your program
accesses the file through
the RD and WW functions.

FR Lock a permanent file from
all but RD accesses by
other programs.

LK Create a data lock on the
referenced records.

There was a system
parameter FCMXLK which
limited the maximum
number of locks per user,
this is not currently
supported.

RD Read one or more
records. No record locking
is performed or checked
on the referenced records.

RE Release a permanent,
temporary or scratch file.

Permanent file
maintenance will be done
via the smfile utility only, so
the release function will be
limited to the temporary
and scratch FCSS files.

RL Create a data lock on the
referenced records and
read the program buffer.

RR For programs using ASCII
COBOL, use RR instead
of RD.

UN Unlock a record lock or an
FCSS file lock or all locks
held by your program. This
function currently works
for non-distributed
transactions.

WL Write a record and keep
the record or file lock
already held by your
program.

WR Write a record or records.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 53

The records must have
been previously locked by
your program.

WW Write a record without
checking for a record lock.

This operation is invalid for
permanent fixed FCSS
files.

Unsupported FCSS functions

Func Description Notes

AL Allocate a Freespace
record. The record is locked
before control is returned to
your program.

AN Allocate a Freespace
record, lock it, write data to
it, and then release the lock.

AP Allocate a specific
Freespace record by its
record key.

AS Assign a temporary or
scratch FCSS fixed file in an
Exec file.

AW Allocate a Freespace
record, lock it, and write
data to it without releasing
the lock.

CK Check for the completion of
one or more requests your
program issued with an
immediate return type.

This function only has
meaning if various return
types are supported,
therefore it's not planned.

LF List the characteristics of a
permanent, temporary, or
scratch file.

Accessible with smfile
print option, unless
required within a
transaction.

RU Unlock a Freespace record
and return it to the system
as a free record.

SF Save on disk any TIP file
updates.

Similar to the FCS-
FLUSH function which
was not ported to TIP/ix
because UNIX handles
file flushing.

UA Release all record and file

Heritage Support Package for OS/2200

54 Proprietary IP-635

locks at commit time.

Differences and Implementation Details in TIP/ix

File Types
Fixed FCSS files can classified as permanent, temporary or scratch. The
permanent fixed FCCS format files are supported. They are defined with
smfile as FCS Direct files.

Temporary and scratch FCSS files are not supported.

Freespace files are not supported.

TCDBF (TIP common data bank) files are not supported.

Return Codes
OS 1100 FCSS function calls allow for specifying when control should
return to the application;

Code: Description

FCDONE: Control returns after the completion of the request
this represents.

FCIMED: Control returns immediately, the program must
check for the completion of the request.

FCALLD: Control returns after the completion of all
outstanding FCSS requests

FCDNIL: Synchronous read of record after immediate
locking.

FCIMIL: Asynchronous read of record after immediate
locking,

FCALIL: Completes all outstanding FCSS requests after
immediate locking.

The only return code supported will be FCDONE. Function calls are
validated based on the old return code requirements. The last three
modes are used on a RL (Read and Lock function) to return immediately,
otherwise the RL will wait forever for the lock.

File Naming
The OS 1100 file system refers to all files by a TIP file number. The file
numbers range in value from 17 to a system defined maximum, the first
16 numbers are reserved for system use.

To relate the file number to a TIP/ix file name, the name as entered with
smfile must contain a 0-filled numeric value “00000100” and the path field
will contain the actual file UNIX file name, perhaps
“/u/tipsrc/tipfiles/fcss100”. The valid file numbers will range from 1 to
99999999. The maximum value is derived by the maximum number of
characters in the file name field.

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 55

Maximum file size
Files are pre-allocated and the size can not be expanded due to record
writes. When a file is registered with a specific number of records and a
specific record length, its size has been established. If an attempt is made
to write beyond this size, an error is returned.

To enforce a maximum file size, you can use smfile to specify the
maximum number of records. If the maximum record count has been
added to the file definition it will be used to limit writes to the file. The
records are pre-allocated and filled with dummy values. If the file already
exists and exceeds the specified maximum a warning message will be
logged and a maximum record count true to the file’s actual size will be
used.

Exclusive File Access
OS 1100 files are only accessible through the FCSS interface and
through batch programs which have connected to the TIP system. Files
should be defined with Exclusive access via smfile.

Record Locking
The record unlock function UN unlocks a record lock or an FCSS file lock
or all locks held by your program.

However, if there have been any updates against the record locks to be
released, the request is ignored. This function currently works for non-
distributed transactions. If it is used in a distributed environment results
are unpredictable.

Deadlock Handling
In TIP/ix, when deadlock is detected an error is returned but no current
locks are released.

In OS 1100, when a potential deadlock is detected on a record lock
function, an error is returned, and the other lock which contributed to the
deadlock situation is released as well. The releasing of the lock is not
supported because this interferes with TIP/ix system design.

Unprotected Files
The WW function writes a record to an unprotected file regardless of
locks held by this or another program. An unprotected file is one
contained in a TIP file table that has the “WW allowed” option set..

This function is invalid for permanent fixed FCSS files and Freespace
files, because the file may be used in a recoverable transaction and this
kind of operation would corrupt the data.

Duplex files
Files can be either simplex or duplex, this is a file mirroring technique.
The duplex file type is not supported.

Heritage Support Package for OS/2200

56 Proprietary IP-635

Maintenance functions
Specific maintenance functions allow the transaction to modify pre-
registered file attributes. The RV reserve a permanent file, CG change a
permanent file and RE release a permanent file are back door functions
to modify the OS 1100 VALTAB entries for a file. In TIP/ix, you use smfile
to achieve the equivalent operation.

The LF list characteristics function is not supported. Use the Print option
in the smfile menu instead.

Error handling
Many error codes available in OS/1100 have no meaning in the TIP/ix
environment. The error status bit will indicate success or failure of an
operation correctly, however, various other codes may not occur as
expected. You should review any specific error code handling.

Transaction Processing API

Commit:

CALL "COMMIT"

or the ASCII COBOL equivalent

CALL "CCMMIT"

Rollback:

CALL "ROLLBACK"

or the ASCII COBOL equivalent

CALL "CRLBACK"

Where:

Function Description Notes

COMMIT Commit updates,
all locks held by
this transaction are
freed.

This is equivalent to the
TIP/ix FCS function FCS-
TREN with the user’s PIB
lock indicator set to PIB-
COMMENT

ROLLBACK Rollback updates,
all locks held by
this transaction are
freed..

This is equivalent to the
TIP/ix FCS function FCS-
TREN with the user’s PIB
lock indicator set to PIB-
ROLLBACK

CCMMIT ASCII COBOL
equivalent to
COMMIT.

CRLBACK ASCII COBOL
equivalent to

Heritage Support Package For Unisys 2200

Feb 2007 Proprietary 57

ROLLBACK

Batch Connected FCSS API
In batch connected mode the FCSS API is the same, the following
functions are provided to allow the user to connect and disconnect to
TIP/ix. To use the batch connect mode you must link your applications
with the libbat.a library.

Connect:

CALL "CONECT"

or the ASCII COBOL equivalent

CALL "CCONET"

Disconnect:

CALL "DISCON"

or the ASCII COBOL equivalent

CALL "CDISCN"

Where:

Function Description Notes

CONECT Connect
program to
TIP/ix.

This is equivalent to the TIP/ix
BATFCS function BATACTIV or
BATCONNECT.

CCONET Equivalent to
CONECT.

DISCON Disconnect
program from
TIP/ix

CDISCN Equivalent to
DISCON.

Miscellaneous

STATUS & TIPDUMP Utilities
The status and tipdump utilities have been modified to provide some extra
information for 1100/2200 applications. Both of these utilities now provide
sub-transaction Id and the type of the lock (exclusive or read-only) being
applied to the file. To get this information, execute status -k.

